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A B S T R A C T

Abnormal metabolism has emerged as a prominent hallmark of cancer and plays a pivotal role in carcinogenesis 
and progression of lung adenocarcinoma (LUAD). In this study, single-cell sequencing revealed that the meta-
bolic enzyme 6-phosphogluconate dehydrogenase (PGD), which is a critical regulator of the pentose phosphate 
pathway (PPP), is significantly upregulated in the malignant epithelial cell subpopulation during malignant 
progression. However, the precise functional significance of PGD in LUAD and its underlying mechanisms remain 
elusive. Through the integration of TCGA database analysis and LUAD tissue microarray data, it was found that 
PGD expression was significantly upregulated in LUAD and closely correlated with a poor prognosis in LUAD 
patients. Moreover, in vitro and in vivo analyses demonstrated that PGD knockout and inhibition of its activity 
mitigated the proliferation, migration, and invasion of LUAD cells. Mechanistically, immunoprecipitation-mass 
spectrometry (IP-MS) revealed for the first time that IQGAP1 is a robust novel interacting protein of PGD. 
PGD decreased p-AMPK levels by competitively interacting with the IQ domain of the known AMPKα binding 
partner IQGAP1, which promoted glycolysis and fatty acid synthesis in LUAD cells. Furthermore, we demon-
strated that the combination of Physcion (a PGD-specific inhibitor) and metformin (an AMPK agonist) could 
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inhibit tumor growth more effectively both in vivo and in vitro. Collectively, these findings suggest that PGD is a 
potential prognostic biomarker and therapeutic target for LUAD.

1. Introduction

Non-small cell lung cancer (NSCLC) is the most common cause of 
cancer-related mortality, causing millions of deaths every year world-
wide. Among the various pathological types of NSCLC, lung adenocar-
cinoma (LUAD) has emerged as the predominant type [1,2]. Despite the 
continual advancements in LUAD treatment [3], efficacy remains 
disconcertingly marginal. Thus, it is crucial to identify a definitive bio-
logical marker for LUAD diagnosis and prognosis evaluation. Metabolic 
perturbations are emerging as key events in tumorigenesis and cancer 
growth [4,5]. The pentose phosphate pathway (PPP) plays a pivotal role 
in helping cancer cells meet anabolic demands and combat oxidative 
stress [6]. The aberrant activation of the PPP in tumor cells results in 
pentose phosphate production, promoting nucleic acid synthesis and 
increasing the levels of NADPH, which is essential for fatty acid syn-
thesis and cell viability under stressful conditions [7,8]. Thus, targeting 
the PPP remains an attractive therapeutic intervention in cancer. 
6-Phosphogluconate dehydrogenase (PGD), the third enzyme in the PPP, 
generates the second NADPH molecule and ribulose-5-phosphate 
(Ru5P). PGD plays an instrumental role in the malignant progression 
of tumors. Abolishing the phosphorylation of PGD significantly reduces 
EGF-induced glioma cell proliferation, tumor growth, and resistance to 
ionizing radiation [9]. Furthermore, ATP13A2 activates the PPP to 
promote colorectal cancer growth through the TFEB-PGD axis [10]. A 
reciprocal interaction between the androgen receptor and PGD also 
promotes the proliferation of prostate cancer cells [11]. However, its 
functional role in LUAD progression remains unknown.

IQGAP1 is a scaffold that regulates several biological processes and 
metabolic pathways by interacting with its binding partners [12]. The 
interaction between ARF1 and IQGAP1, which reactivates ERK 
signaling, plays a crucial role in vemurafenib resistance and colorectal 
cancer metastasis [13]. Moreover, direct interactions between IQGAP1 
and both AMPK and CaMKK2 suppress AMPK activation in various cell 
types [14]. Nevertheless, very few previous studies have reported the 
impact of alterations in IQGAP1-associated interactions in LUAD.

In the present study, we identified the high expression of PGD and its 
biological role in LUAD. Mechanistically, it was found that PGD 
competitively interacts with the IQ domain of IQGAP1, which activates 
the AMPK pathway and promotes glycolysis and fatty acid synthesis in 
LUAD cells. Our findings demonstrate that PGD may be a promising 
predictive biomarker for patients with LUAD in the clinic.

2. Materials and methods

2.1. Patients and specimens

Lung cancer specimens and matched adjacent tissues were obtained 
from patients at the Northern Jiangsu People’s Hospital and used to 
construct a tissue microarray. The microarray cohort (n = 62) comprised 
patients with adenocarcinomas (n = 21) and squamous cell carcinomas 
(n = 41). Patients treated with radical gastrectomy, adjuvant radio-
therapy, or chemotherapy during the observation period were excluded. 
Ethical approval was obtained from the Ethics Committee of Northern 
Jiangsu People’s Hospital.

2.2. Single-cell sequencing

Specimens were collected from six patients with primary LUAD who 
were first examined and underwent surgery at the Department of 
Thoracic Surgery, Northern Jiangsu People’s Hospital. Thirteen samples 
were collected, consisting of one normal tissue sample and 12 tumor 

tissue samples. Tissues were digested into single cells and loaded onto 
the 10x Genomics Chromium™ platform. Single-cell RNA-Seq libraries 
were prepared using the 10x Genomics Chromium Next GEM Single Cell 
3ʹ Kit v3.1 according to the manufacturer’s protocol. Indexed libraries 
were pooled according to the number of cells and sequenced on a 
NovaSeq 6000 (Illumina) using 150-bp paired ends. The output-filtered 
gene expression matrices were analyzed using the Seurat software 
package (v.4.3.0) in R software (v.4.3.0).

2.3. Cell lines and drugs

Four human lung cancer cell lines (A549, PC9, SPCA1 and H1975) 
and one normal human lung cell line (B2B) were obtained from the 
American Type Culture Collection (ATCC, MD, VA, US) and cultured 
according to the ATCC instructions. Physcion, metformin, and dorso-
morphin dihydrochloride were purchased from MedChemExpress 
(Shanghai, China).

2.4. Cell transduction

SgRNAs targeting PGD and PGD Flag-tagged lentiviruses were 
designed and synthesized by Corues Biotechnology (Nanjing, China). 
For transduction, the cells were plated at approximately 30–40 % 
confluence in 6-well plates. After 72 h of transduction, the cells were 
harvested and used for further experiments. The sequences of the 
sgRNAs used were as follows: sg-PGD_001, 5′-GGCCAA-
GAAATCATCAACTT-3′; sg-PGD_002, 5′-GGCCAAGAAATCATCAACTT- 
3′; and sg-PGD_003, 5′-ACCAGGAGGATGATCCGCCG-3′.

2.5. Animal model

B6-KrasLSL-G12D/+ mice were obtained from Jiangsu GemPharmatech 
(Nanjing, China) and bred under specific-pathogen-free (SPF) condi-
tions. After being anesthetized with 4 % chloral hydrate, the mice were 
intratracheally injected with 5 × 107 PFU of adenovirus (Ad-Cre, OBIO) 
at 4–6 weeks of age and sacrificed 24 weeks after infection.

BALB/cJGpt mice (4–5 weeks old) were purchased from Gem-
Pharmatech (Nanjing, China) and divided into four groups. After sub-
cutaneous implantation of A549 cells, the mice were intragastrically 
administered PBS, Physcion (20 mg/kg), metformin (10 mg/kg), or a 
combination of the two drugs once every 2 days, at the tumor volume of 
20 mm3. Tumor weight and tumor size were recorded every four days, 
and the tumor volume was calculated as π/6 × L × W2 (W, width at the 
widest point; L, perpendicular width). Xenograft tumors were harvested 
after 6 weeks.

All animal experiments were approved by the Ethics Committee of 
North Jiangsu People’s Hospital (Yangzhou, China).

2.6. Cell viability assay

Cells were seeded at a density of 2 × 103 cells/well in 96-well plates. 
Viability was assessed after culture for 0, 24, and 48 h using a CCK-8 
assay (Dojindo Laboratories, Japan); the cells were incubated with the 
CCK-8 reagent for 1 h at 37 ◦C. The absorbance of the cells was measured 
at 450 nm using a microplate reader. Different concentrations of Phys-
cion were added to the wells, followed by incubation for 48 h. Cell 
proliferation was detected in the same way as described above.

2.7. Colony formation assay

Five hundred LC cells were seeded in 6-well plates and transfected or 
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cultured with Physcion at different concentrations. After 14 days, the 
cells were fixed with 4 % formaldehyde for 10 min and stained with 
crystal violet at room temperature for 30 min. Then, the cells were 
washed twice with PBS and observed under a microscope.

2.8. Cell migration and invasion assay

Transwell chambers (Corning, NY, USA) with or without Matrigel 
(Mogengel Bio #082704, Xiamen, China) were used to detect cell 
migration and invasion. Briefly, 1 × 104 cells were seeded in the upper 
Transwell chamber in serum-free medium. The lower chamber was 
incubated with complete medium supplemented with 20 % fetal bovine 
serum (FBS) at 37 ◦C. After 24 h, nonmigratory or noninvasive cells were 
removed, and the cells that migrated through the membrane were 
counted under a microscope (Olympus, Tokyo, Japan) after fixation and 

staining with crystal violet.

2.9. Spheroid formation and invasion assay

Five thousand cells were seeded in a 96-well ultralow attachment 
plate (Corning #3474, NY, USA) containing RPMI 1640 medium sup-
plemented with 10 % FBS for three-dimensional (3D) culture. After 48 h, 
spheroids were established in 96-well plates, and half of the medium was 
replaced with Matrigel (Mogengel Bio #082704, Xiamen, China) for the 
invasion assay. After a 96-h incubation period, the formed spheroids 
were imaged using a microscope (Olympus, Tokyo, Japan).

2.10. Bioinformatics and statistical analysis

The RNA expression data of 585 LUAD patients and 550 LUSC 

Fig. 1. Single-cell sequencing revealed significant activation of the PPP in malignant epithelial cells in LUAD. (A) Global uniform manifold approximation and 
projection (UMAP) plot of 7 cell types comprising 143,382 cells obtained via scRNA-seq. (B) Heatmap depicting marker genes of each cell type. (C) Cell proportion 
diagram of each sample. (D) Global UMAP plot of 15 clusters of epithelial cells. (E) CNVs in epithelial cells compared with those in fibroblasts. The red color 
represents amplification, and the blue color represents deletion. (F) Global UMAP plot of epithelial cells defined as either normal or tumor cells based on the 
CNVscore. (G) T values calculated via GSVA and the limma package based on metabolic pathway-related gene sets. (H) Pseudotime analysis of all epithelial cells via 
Slingshot. (I) Pseudotime analysis of four rate-limiting enzymes in the PPP pathway via Slingshot.
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patients were downloaded from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/) and analyzed using DESeq2. 
Metabolism-related gene sets were selected from the Gene Set Enrich-
ment Analysis (GSEA) database, and gene set variation analysis (GSVA) 
was performed to evaluate metabolic pathway activity. Statistical ana-
lyses were conducted using a two-tailed unpaired Student’s t-test unless 
otherwise indicated. All the data are presented as the means ± standard 
deviations (SDs) of three independent experiments. The significance 
level is indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and 
****P < 0.0001. Overall survival (OS) (from the date of surgery to the 
date of death) was analyzed using Kaplan–Meier curves. SPSS software 
(version 19.00) was used for the statistical analysis.

3. Results

3.1. The PPP is significantly activated in LUAD

The tumor microenvironment (TME) is an indispensable factor in 
tumorigenesis and development[15–18]. To explore the cellular and 
molecular heterogeneity in LUAD, we collected one normal tissue 
sample and twelve tumor tissue samples from six LUAD patients for 
single-cell RNA sequencing. After processing and quality control of the 

raw data, 143382 cells were retained for subsequent analysis. We 
employed the Harmony algorithm to harmonize the data and ensure 
robust downstream analyses to mitigate the confounding effects of batch 
variations. Based on the expression of canonical marker genes, we 
accurately annotated each cell as a T cell (CD3D, CD3E, CD3G, and CD2), 
a myeloid cell (CD68, LYZ, MARCO, and FCGR3A), an epithelial cell 
(EPCAM, KRT19, KRT18, and CDH1), a B cell (CD79A, IGHM, IGHG3, 
and MS4A1), an endothelial cell (PECAM1, CLDN5, FLT1, and RAMP2), 
a fibroblast (DCN, COL1A1, COL1A2, and COL6A1), or a mast cell 
(TPSAB1 and MS4A2) and subsequently visualized the cellular land-
scape using a UMAP plot (Fig. 1A–C). Specifically focusing on the 
epithelial cell population, we classified them into 15 clusters and 
employed the inferCNV algorithm to investigate chromosomal copy 
number variations (CNVs) at the single-cell level. Fibroblasts were used 
as reference cells since they have low CNVs in LUAD. We stratified the 
epithelial cells into normal and tumor categories by calculating the CNV 
score for each cluster (Fig. 1D–F). Dysregulation of tumor metabolism 
plays a crucial role in the malignant transformation of tumors [19]; thus, 
we conducted a gene set variation analysis (GSVA) based on metabolic 
pathway-related gene sets downloaded from the Molecular Signatures 
Database (MSigDB) [20], which revealed significant upregulation of 
genes in the PPP, specifically within the malignant epithelial cell subset 

Fig. 2. The expression of PGD was significantly upregulated in LUAD and was associated with a poor prognosis. (A) GSVA was used to score the differentially 
expressed metabolic pathway-related gene sets for each sample, and the values were compared between the normal and tumor tissues from the TCGA. (B) Lollipop 
plot depicting the GSVA score of metabolism-associated genes in each sample between the normal and tumor tissues. (C) Violin plot of four rate-limiting enzymes in 
the PPP pathway. (D) Kaplan–Meier analysis of the overall survival (OS) profiles of the TCGA LUAD cohort. (E) Spearman’s correlation analysis of the correlation 
between the expression of PGD and GSVA scores of PPP pathway-associated genes. (F) The distribution of the difference in the PGD immunoreactivity score (IRS) 
(△IRS=IRST− IRSN). The IRS of PGD staining was available for 62 pairs of tissues. (G) Representative IHC images of 21 pairs of LUAD tissues in the tissue microarray 
(TMA) probed with anti-PGD antibodies (scale bars = 500 μm or 50 μm). (H) Kaplan–Meier analysis of OS based on PGD expression in patients with LUAD. (I) 
Representative IHC images of tissues from LUAD orthotopic models probed with anti-PGD antibodies (scale bars = 500 μm or 50 μm).

J. Wu et al.                                                                                                                                                                                                                                      Cancer Letters 601 (2024) 217177 

4 

https://portal.gdc.cancer.gov/


(Fig. 1G). Furthermore, we employed the slingshot algorithm to calcu-
late the trajectory of epithelial cells and assessed the core molecules 
involved in PPP-driven tumorigenesis [21]. The expression levels of 
rate-limiting enzymes (PGD, G6PD, TALDO1, and TKT) in the PPP 
progressively increased during the transition of epithelial cells from a 
benign state to a malignant state (Fig. 1H and I). These findings suggest 
that the PPP plays a critical role in the tumorigenesis and development 
of LUAD.

3.2. PGD is highly expressed in LUAD and associated with poor prognosis

To further validate these findings, we downloaded TCGA data for 
568 LUAD patients and 545 LUSC patients. Then, GSVA based on 
metabolic pathway-related gene sets was conducted, and the results 
showed that the PPP was also significantly enriched in both LUSC and 
LUAD samples compared to the controls (Fig. 2A and B; Figs. S1B and C). 
Moreover, the expression of all four rate-limiting enzymes (PGD, G6PD, 
TALDO1, and TKT) was significantly elevated (Fig. 2C; Figs. S1D and E). 
However, only high expression of PGD was associated with a poor 
prognosis in LUAD patients but not in LUSC patients. These findings 
highlight the potential role of PGD in the pathogenesis of LUAD and 
underscore its relevance as a prognostic marker for LUAD patients 
(Fig. 2D; Figs. S1A and G). The robust correlation between PPP activity 
and high PGD expression further validated this observation (Fig. 2E; 
Fig. S1F).

Next, a tissue microarray (TMA) was constructed, and PGD staining 
was performed via immunohistochemistry to further elucidate the 
expression pattern of PGD in LUAD. PGD expression was greater in 
cancerous tissues than in paired normal tissues from LUAD and LUSC 
patients. Consistently, high PGD levels were positively associated with 
worse prognosis in LUAD patients but not in LUSC patients (Fig. 2F–H; 
Figs. S1H–J). To further confirm this finding, a murine orthotopic LUAD 
model was established using B6-KrasLSL-G12D mice, and cancer and 
adjacent normal tissues were collected (Fig. 2I). The IHC results showed 
that PGD was significantly upregulated in tumor tissues compared to 
normal tissues, indicating that PGD may act as an oncogene in LUAD and 
accelerate the progression of LUAD.

3.3. PGD promotes the proliferation, migration, and invasion of LUAD 
cells

We first assessed PGD expression in a human normal lung bronchial 
epithelial cell line (BEAS-2B) and four LUAD cell lines (A549, SPCA1, 
H1975 and PC9). The results revealed that the protein level of PGD was 
significantly greater in LUAD cells than in BEAS-2B cells. Furthermore, 
to assess the function of PGD in LUAD, we established A549 cells with 
stable PGD knockout and H1975 cells with stable PGD overexpression 
(Fig. 3A; Fig. S2A). The upregulation of PGD significantly promoted 
H1975 cell viability, while the knockout of PGD decreased A549 cell 
viability according to the CCK-8 assay (Fig. 3B and C; Figs. S2B and C). 
Consistently, colony formation assays showed that PGD overexpression 
markedly promoted LUAD cell colony formation, while PGD deficiency 
inhibited colony formation (Fig. 3D and E; Fig. S2D). These data suggest 
that PGD may act as an oncogene that promotes LUAD cell proliferation.

Next, to determine the role of PGD in LUAD cell metastasis, we first 
performed migration and invasion assays in vitro. The data showed that 
ectopic expression of PGD promoted the migration and invasion of 
H1975 cells. Conversely, PGD knockout in A549 cells had the opposite 
effect (Figs. S2E–G). To further evaluate the role of PGD expression in 
invasion, cells were seeded in ultralow attachment plates, and tumor cell 
spheroids were formed after 48 h. Then, we embedded tumor cell 
spheroids in Matrigel and evaluated their invasive potential. A549 cells 
with PGD knockout were not able to invade Matrigel. Similarly, 
compared with control H1975 cells, PGD-overexpressing H1975 cells 
had increased Matrigel invasion capacity (Fig. 3F and G). Therefore, 
these data indicate the critical role of PGD in promoting LUAD cell 

metastasis.
In addition, Physcion, an anthraquinone isolated from the traditional 

Chinese medicine Radix et Rhizoma Rhei, is an inhibitor of PGD [8]. 
Thus, we treated LUAD cell lines with different doses of Physcion for 48 
h and found that cell viability decreased in a dose-dependent manner (p 
< 0.05) (Fig. 3H; Fig. S3A). Next, a colony formation assay was per-
formed, and the results showed that Physcion significantly suppressed 
the colony formation of LUAD cells (Fig. 3I; Fig. S3C). Furthermore, 
Transwell assays revealed that 50 μM Physcion treatment markedly 
reduced the migratory and invasive abilities of LUAD cells (Fig. 3K and 
L; Fig. S3D). However, 50 μM Physcion did not affect the proliferation of 
LUAD cells after 12 h (Fig. 3J). We also performed tumor xenograft 
studies to verify the roles of PGD in vivo, and the results showed that 
knockout of PGD significantly inhibited tumor growth, as reflected by 
the tumor size and weight compared with those of tumors derived from 
the WT cells (Fig. 3M–O). In addition, IHC results showed decreased 
expression of Ki-67, a biomarker of proliferation, in the tumor tissues of 
the PGD knockout group compared with that in the WT group (Fig. 3P). 
Collectively, these results demonstrated that PGD is essential for the 
proliferation, migration, and invasion of LUAD cells in vitro and in vivo.

3.4. Inhibition of PGD decreases enzyme activity and inhibits glycolysis 
and fatty acid synthesis

PGD catalyzes the decarboxylation of 6-phosphogluconate, yielding 
Ru-5-P and NADPH to fulfill the unique bioenergetic and biosynthetic 
demands of cancer cells [22]. In our study, we found that PGD knockout 
or Physcion treatment decreased the NADPH/NADP+ ratio (Fig. 4D; 
Fig. S3B). Reactive oxygen species (ROS) produced by various 
biochemical and physiological oxidative processes in the body are 
associated with numerous physiological and pathophysiological pro-
cesses and play a major role in the pathogenesis of cancer [23–25]. In 
particular, the NAPDH oxidase family is considered an important 
regulator of ROS generation [26]. Knockout of PGD or treatment with 
Physcion significantly increased the ROS levels in A549 and SPCA cells. 
Notably, Physcion significantly increased ROS levels in a 
dose-dependent manner (Fig. 4A–C; Figs. S4A and B).

Next, to identify the molecular mechanism by which PGD promotes 
LUAD progression, we divided tumor epithelial cells into two groups 
based on PGD expression levels and performed gene set enrichment 
analysis (GSEA) based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) dataset. The results indicated that the adipocytokine signaling 
pathway and glycolysis pathway were significantly enriched in PGD- 
high cells (Fig. 4E). We further substantiated this finding through 
experimental verification. Knockout of PGD in A549 cells markedly 
suppressed lactate production and decreased glycolytic capacity (Fig. 4F 
and G). In contrast, PGD upregulation significantly promoted lactate 
production and increased glycolytic capacity in H1975 cells. Oil Red O 
staining also revealed that PGD expression significantly promoted lipid 
accumulation in H1975 cells (Fig. 4H). Knockout of PGD in A549 cells 
induced the opposite effects. Collectively, these findings suggest that 
PGD may promote glycolysis and lipid metabolism to drive LUAD 
progression.

3.5. PGD inhibits the activation of the AMPK pathway by competitively 
interacting with IQGAP1

AMP-activated protein kinase (AMPK) is an AMP-sensitive protein 
kinase that functions as an energy stress sensor in cells and plays a key 
role in the regulation of energy homeostasis, including glycolysis and 
fatty acid synthesis [27–29]. Previous studies have also shown that 
LKB1-AMPK activation is mediated by the Ru-5-P level, which depends 
on PGD activity in tumors [8,30,31]. We speculated that PGD may also 
regulate the AMPK pathway in LUAD. The Western blotting results 
showed that the p-AMPK level was markedly increased in LUAD cells 
after the inhibition of PGD activity (Fig. 5A).
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Fig. 3. PGD promotes the proliferation, migration, and invasion of LUAD cells in vitro and in vivo. (A) The protein levels of PGD in a human normal lung bronchial 
epithelial cell line (BEAS-2B) and four LUAD cell lines were measured by WB. The efficiency of PGD knockout and overexpression was verified at the protein level by 
WB in A549 and H1975 cells. (B, C) The knockout of PGD significantly decreased A549 cell viability, while the upregulation of PGD increased H1975 cell viability 
according to the CCK-8 assay. (D) The knockout of PGD impaired the colony formation ability of A549 cells (left panel). Quantification of the colony formation assay 
results (right panel). (E) Overexpression of PGD increased the colony-forming ability of H1975 cells (left panel). Quantification of the colony formation assay results 
(right panel). (F, G) Invasion of A549 cells (F) and H1975 cells (G) after knockout or overexpression of PGD 48 h after embedding the spheroids in Matrigel. The area 
occupied by spheroids embedded in Matrigel was quantified as a readout of invasion, and representative images are shown. Scale bar = 200 μm. (H, I) Physcion dose- 
dependently decreased the viability (H) and the colony formation ability (I) of A549 cells. (J–K) Physcion did not affect the viability of A549 cells at a concentration 
of 50 μM (J) but significantly inhibited the migration and invasion abilities of A549 cells in transwell chambers (L). Representative images (scale bars = 400 μm, left 
panel) and quantification (right panel) of the cell migration and invasion assay results are shown. (L) Invasion of A549 cells into Matrigel using Physcion (50 μM). 
The area occupied by spheroids embedded in Matrigel was quantified as a readout of invasion, and representative images are shown. Scale bar = 200 μm. (M) 
Knockout of PGD inhibited A549 LUAD cells subcutaneous tumor growth in nude mice (n = 6). (N) The tumors were extracted and weighed after 30 days. (O) The 
tumor volume was monitored every five days, and tumor growth curves were generated. (P) Sections of tumors were stained with anti-Ki-67 and anti-PGD antibodies 
by IHC (scale bars = 100 μm).
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To explore the mechanism involved in the inactivation of the AMPK 
pathway in LUAD patients with high PGD, we identified PGD-interacting 
proteins using immunoprecipitation-mass spectrometry (IP-MS) analysis 
in Flag-tagged PGD-overexpressing H1975 cells (Fig. 5B and C). Based 
on previous literature, we have summarized 26 proteins that can regu-
late the AMPK pathway. Among these proteins, IQGAP1 was abundantly 
precipitated by PGD as an interacting protein, and it was also identified 
as a candidate regulator of AMPK activation [32,33]. (Fig. 5D). 
Furthermore, Western blotting followed by coimmunoprecipitation 
(co-IP) confirmed that PGD interacts with IQGAP1 (Fig. 5E and F). 
Subsequently, the interaction between PGD and IQGAP1 was confirmed 
by immunofluorescence staining of H1975 cells (Fig. 5G). IQGAP1 can 
also bind concurrently with AMPKα to increase its phosphorylation level 
[34]. However, here, we found that AMPK phosphorylation was 

repressed after PGD overexpression, and we speculated that PGD and 
AMPKα may compete for IQGAP1 binding. Indeed, the interaction be-
tween IQGAP1 and AMPKα was significantly inhibited in 
PGD-overexpressing cells (Fig. 5H). In addition, binding domain map-
ping demonstrated that the IQ domain in the IQGAP1 protein, a region 
known to bind to AMPKα, was responsible for the interaction with PGD 
(Fig. 5I and J), which suggested that the IQ domain is essential for the 
binding of IQGAP1 and the PGD protein to block its interaction with 
APMKα.

3.6. Inhibition of the AMPK pathway restores the anticancer effects 
induced by PGD knockout

We knocked out PGD and simultaneously treated A549 cells with 

Fig. 4. PGD accelerates LUAD malignant progression by inhibiting glycolysis and fatty acid synthesis. (A) After adding different concentrations of Physcion to A549 
cells, the cells were incubated with DCFH-DA, and the concentration of ROS was subsequently detected using fluorescence microscopy. Representative images (scale 
bars = 200 μm) are shown. (B, C) The ROS levels of A549 cells and H1975 cells after PGD knockout or overexpression were measured assessed by flow cytometry. 
Representative images (left panel) and quantification (right panel) results are shown (right panel). (D) Measurement of the NADPH/NADP+ ratio in A549 cells and 
H1975 cells after PGD knockout or overexpression. (E) Differentially enriched pathways were scored by GSVA for each cell in the PGD-low and PGD-high expression 
groups based on the KEGG database. (F) Knockout of PGD decreased lactate levels in A549 cells. Overexpression of PGD induced lactate production in H1975 cells. 
(G) The ECAR profile was monitored in PGD-overexpressing and PGD-knockout LUAD cells using a Seahorse XF96 analyzer for 100 min. (H) After PGD knockout or 
overexpression, A549 cells and H1975 cells were treated with oleic acid and palmitic acid (at a final concentration of 200 μM) and stained with Oil Red O.
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dorsomorphin dihydrochloride (an AMPK inhibitor) to confirm that PGD 
promoted tumor progression in an AMPK-dependent manner. Western 
blotting was performed to evaluate the efficiency of PGD knockout and 
the activity of AMPK (Fig. 6A). Knocking out PGD suppressed the pro-
liferation of A549 cells, and this effect was reversed upon the addition of 
dorsomorphin dihydrochloride (Fig. 6A). Consistently, dorsomorphin 
dihydrochloride restored the inhibition of migration and invasion in 
A549 cells caused by PGD knockout (Fig. 6C). H1975 cells with PGD 
overexpression exhibited enhanced invasion into Matrigel, and metfor-
min (an AMPK activator) suppressed this phenomenon (Fig. 6D). 
Moreover, glycolysis and fatty acid synthesis, which are regulated by the 
AMPK pathway, were suppressed after PGD knockout, and this 

inhibition effect was reversed by the addition of dorsomorphin dihy-
drochloride. Metformin suppressed glycolysis and fatty acid synthesis, 
which were upregulated by PGD (Fig. 6E–H). Thus, our data suggest that 
PGD may promote malignant progression via the inhibition of the AMPK 
pathway.

3.7. PGD shows potential as a novel and effective therapeutic target for 
LUAD

Metformin is widely used as an antidiabetic drug. In recent years, it 
was confirmed to inhibit tumor progression through multiple mecha-
nisms [35–38]. In our study, it inhibited tumor proliferation in a 

Fig. 5. PGD decreases p-AMPK levels by competitively interacting with the IQ domain of IQGAP1. (A) The levels of the indicated proteins in PGD-overexpressing, 
PGD-knockout or Physcion-treated LUAD cells were detected by Western blotting. (B) Proteins interacting with Flag-tagged PGD were enriched by IP, and the gel was 
stained with Coomassie Brilliant Blue. (C) Liquid chromatography-MS/MS was employed to identify the proteins interacting with Flag-tagged PGD. (D) Venn diagram 
showing the proteins identified by LC‒MS/MS and an AMPK pathway-related gene set. (E) Endogenous PGD in H1975 cells was immunoprecipitated with an anti- 
Flag antibody, and the samples were analyzed by Western blotting using anti-Flag and anti-IQGAP1 antibodies. (F) Endogenous IQGAP1 in H1975 cells was 
immunoprecipitated with an anti-IQGAP1 antibody, and the samples were analyzed by Western blotting using anti-IQGAP1, anti-AMPKα and anti-Flag antibodies. 
(G) An immunofluorescence (IF) assay was used to detect the location of PGD and IQGAP1 in H1975 cells. (H) Endogenous IQGAP1 in Ctrl or PGD-overexpressing 
cells was immunoprecipitated with an anti-IQGAP1 antibody, and the samples were analyzed by Western blotting using anti-IQGAP1 and anti-AMPKα antibodies. (I) 
Graphic illustration of IQGAP1 deletion mutants. (J) Coimmunoprecipitation of AMPKα or PGD with full-length IQGAP1 and IQGAP1 deletion mutants tagged with 
Myc in HEK293 cells.
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dose-dependent manner (Fig. 7A). The combination of the PGD-specific 
inhibitor Physcion and metformin had synergistic inhibitory effects on 
tumor growth in vitro (Fig. 7B). We also performed tumor xenograft 
studies to verify the roles of the PGD and AMPK pathways in vivo. The 
results showed that the oral administration of both Physcion and met-
formin resulted in a more pronounced decrease in tumor weight and 
volume than did the administration of either agent alone after the sub-
cutaneous implantation of A549 cells into nude mice (Fig. 7C–E). 
Furthermore, the combination exhibited the most prominent activation 
of the AMPK pathway (Fig. 7F). In summary, PGD and its downstream 
AMPK pathway are potential novel targets for the treatment of LUAD.

4. Discussion

Metabolic reprogramming is related to the occurrence and devel-
opment of tumors [39–41], and the PPP is essential for maintaining the 
microenvironment of malignant tumors [42,43]. In the present study, 
through the combined analysis of single-cell data and the TCGA data-
base, we identified significant activation of the PPP pathway in LUAD 
tumor cells. The rate-limiting enzymes in the PPP were found to be 
markedly upregulated with the malignant progression of tumors. How-
ever, only high PGD expression was associated with a poor prognosis in 

patients. Moreover, the impact of high PGD on prognosis was observed 
exclusively in LUAD patients but not in LUSC patients. The results of 
tissue microarray analysis confirmed this unique finding. Therefore, 
studying the specific effects of PGD on LUAD is particularly important 
given its increasing incidence in clinical settings [44].

It has been reported that PGD inhibitors are effective at inhibiting the 
growth and decreasing the viability of ovarian and breast cancer and 
leukemia cells [45,46]. In the present study, we demonstrated that PGD 
is vital for the proliferation, migration, and invasion abilities of LUAD 
cells. According to previous studies, the procarcinogenic role of PGD 
mainly relies on its metabolic enzyme function. NADPH is a PGD 
product that can combat high ROS levels [6,47,48]. High ROS levels 
may increase the vulnerability of cancer cells to energy and oxidative 
stress in the TME[49–51]. Here, we demonstrated that PGD increased 
the NADPH/NADP+ ratio and decreased the ROS level in LUAD. Another 
metabolic byproduct, Ru-5-P, also promotes carcinogenesis. The inhi-
bition of PGD activity reduced the Ru-5-P content to levels below 
physiological concentrations and activated the LKB1/AMPK pathway, 
leading to decreased ACC1 enzyme activity [8,46]. ACC1 plays an 
important role in lipid synthesis, a critical metabolic process in rapidly 
growing tumors [52]. Moreover, the AMPK pathway inhibits tumor 
growth by suppressing glycolysis via the inhibition of HIF1α-HK2 

Fig. 6. PGD promotes glycolysis and fatty acid synthesis by inhibiting AMPK activation. (A) Dorsomorphin dihydrochloride rescues p-AMPK levels in PGD knockout 
A549 cells. (B) Representative images (left panel) and quantification results (right panel) of the colony formation abilities of PGD-knockout A549 cells treated with 
dorsomorphin dihydrochloride or DMSO. (C) Representative images (scale bars = 400 μm, left panel) and quantification results (right panel) of the migration abilities 
of PGD-knockout A549 cells treated with dorsomorphin dihydrochloride or PBS. (D) Invasion of H1975 cells after overexpression of PGD or treatment with metformin 
after 48 h of embedding the spheroids in Matrigel. The area occupied by spheroids embedded in Matrigel was quantified as a readout of invasion, and representative 
images are shown. Scale bar = 200 μm. (E, G) Inhibiting the AMPK pathway restores glycolysis and fatty acid synthesis in PGD-knockout A549 cells. (F, H) Activating 
the AMPK pathway rescues glycolysis and fatty acid synthesis in PGD-overexpressing H1975 cells.
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expression [53]. HK2, a pivotal enzyme, facilitates aerobic glycolysis 
and orchestrates the reconfiguration of metabolic pathways in cancer 
cells [54–56]. According to the findings from the single-cell analysis, we 
divided epithelial cells into two groups based on the expression levels of 
PGD and performed enrichment analysis using the KEGG dataset. The 
results showed significant enrichment in the adipocytokine signaling 
pathway and the glycolysis pathway.

In clinical settings, LUAD patients often exhibit mutations in LKB1 
and are prone to metastasis and metabolic disorders [57]. Therefore, we 
hypothesized that PGD may promote cancer progression independent of 
its enzymatic function. To explore this further, we utilized IP-MS to 
identify proteins that interact with PGD. Here, we first identified a 
specific interaction between PGD and IQGAP1 that could activate the 
AMPK pathway by regulating CaMKK2 [34]. Then, by overexpressing 
IQGAP1 fragments lacking different domains, we demonstrated that the 
binding site on IQGAP1 was located within the IQ domain, which is the 
region known to bind to AMPKα.

These results demonstrated the critical role of PGD in the AMPK 
pathway in LUAD progression. However, there are still some limitations 
to our study. The limited number of single-cell sequencing samples may 
introduce slight biases to the conclusion. Moreover, PGD could modu-
late the malignant progression of tumors through mechanisms inde-
pendent of the PPP or binding proteins, such as the activation of the 

receptor tyrosine kinase c-Met [58], which needs to be explored further.
In conclusion, our study demonstrated that PGD is upregulated in 

LUAD and inhibits the AMPK pathway, whereby it enhances glycolysis 
and fatty acid synthesis to promote the malignant progression of tumors. 
Thus, targeting PGD is a potential therapeutic strategy for the treatment 
of LUAD.
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