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1  |  INTRODUC TION

The evolution of viviparity was estimated to have occurred inde-
pendently more than 100 times in squamates (Blackburn, 2006). 
During the transition from oviparity to viviparity, thickness reduc-
tion of eggshells is one of the key phenotypic changes, which allows 
for oxygen diffusion between the maternal uterus and developing 
embryos (Murphy & Thompson, 2011). There are emerging studies to 
investigate the genetic basis of eggshell reduction in squamates. For 
example, previous genomic and transcriptomic analyses suggested 
that gene- expression changes could account for the degeneration 
of eggshell glands in the viviparous lizard (Phrynocephalus vlangalii), 
therefore leading to eggshell reduction (Gao et al., 2018). A recent 
genome- wide association study (GWAS) on the common lizard 

(Zootoca vivipara) also revealed that the lizard's eggshell thickness 
was genetically determined and identified 17 SNPs associated with 
eggshell traits (Recknagel et al., 2021). However, whether gene loss 
plays a role in eggshell reduction of squamates is unknown. Gene 
loss is important in the evolution of new traits (Blumer et al., 2022; 
Hecker et al., 2019; Huelsmann et al., 2019). Loss of genes pro-
hibits reversion to the ancestral state and could be an adaptive 
force in evolution (Albalat & Cañestro, 2016; Olson, 1999; Smith & 
Rausher, 2011). The loss of eggshells in viviparous squamates could 
be associated with key genes that play eggshell- specific roles.

Eggshells are formed in the maternal oviduct after ovulation and 
mainly composed of deposited calcium carbonate and proteins (termed 
eggshell- matrix proteins; Rose & Hincke, 2009; Stewart et al., 2010). 
Eggshell- matrix protein components consist of three protein groups: 
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Abstract
Thickness reduction or loss of the calcareous eggshell is one of major phenotypic 
changes in the transition from oviparity to viviparity. Whether the reduction of egg-
shells in viviparous squamates is associated with specific gene losses is unknown. 
Taking advantage of a newly generated high- quality genome of the viviparous Chinese 
crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin- 17 gene (OC- 17), 
which encodes an eggshell matrix protein that is essential for calcium deposition in 
eggshells, is not intact in the crocodile lizard genome. Only OC- 17 transcript frag-
ments were found in the oviduct transcriptome, and no OC- 17 peptides were identi-
fied in the eggshell proteome of crocodile lizards. In contrast, OC- 17 was present 
in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the 
loss of OC- 17 is not common in viviparous species, viviparous squamates show fewer 
intact eggshell- specific proteins than oviparous squamates. Our study implies that 
functional loss of eggshell- matrix protein genes may be involved in the reduction of 
eggshells during the transition from oviparity to viviparity in the crocodile lizard.
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egg white proteins expressed in the egg white and the eggshell, 
ubiquitous proteins present in many tissues, and eggshell- specific 
proteins unique to the eggshell (Mann, 2015; Mann & Mann, 2015; 
Rose & Hincke, 2009). Two possible functions of eggshell- specific 
proteins have been proposed: regulation of calcium deposition in 
eggshells and antimicrobial defence (Rose & Hincke, 2009). A total 
of six eggshell- specific proteins have been reported in the eggshells 
of birds: ovocleidin- 17 (OC- 17), ovocleidin- 116 (OC- 116), ovocalyx-
in- 32 (OCX- 32), ovocalyxin- 36 (OCX- 36), ovocalyxin- 25 (OCX- 25), 
and ovocalyxin- 21 (OCX- 21; Mann & Mann, 2015). OC- 17 is the first 
reported eggshell- specific protein, and it is one of the major proteins 
in chicken eggshells (Hincke et al., 1995). It has biomineralization ac-
tivity and is suggested to function in the initiation of calcite deposi-
tion in bird eggshells (Freeman et al., 2010, 2011; Lakshminarayanan 
et al., 2002; Reyes- Grajeda et al., 2004; Yu et al., 2013). OC- 17 
also has antimicrobial activity (Mine et al., 2003; Wellman- Labadie 
et al., 2008). OC- 116 is also a major component of chicken eggshell 
and is suggested to function in maintaining calcium deposition in 
eggshells (Hincke et al., 1999). OCX- 32 is mainly present in uterine 
fluid during the late stage of eggshell calcification and is therefore 
surmised to be involved in the termination of calcification (Gautron 
et al., 2001; Hincke et al., 2003). A correlation between haplotypes of 
OCX- 32 and eggshell strength was also reported (Dunn et al., 2009; 
Takahashi et al., 2010). Ocx- 36 is homologous to proteins that per-
form innate immune functions, so it is supposed to function in anti-
microbial defence (Gautron et al., 2007). Reports about OCX- 25 and 
OCX- 21 are scarce, and their functions in eggshells are unknown. 
OCX- 25 is a protease inhibitor with WAP and Kunitz domains (Mann 
& Mann, 2015). OCX- 21 is identical to chicken gastrokie- 2 which be-
longs to the gastric mucosal secretome (Marie et al., 2015).

The Chinese crocodile lizard (Shinisaurus crocodilurus) is a vi-
viparous squamate endemic to evergreen mountain forests in 
southern China and northern Vietnam and is currently endangered 
(Huang, 2009; van Schingen et al., 2015). It is the only living species 
of the family Shinisauridae. The divergence time of the crocodile liz-
ard and the closest living relatives (monitor lizards) is about 100 Mya 
(Xie et al., 2022; Zheng & Wiens, 2016). The crocodile lizard was es-
timated to have an ancient origin of viviparity during the Cretaceous 
period, which is older than most Cenozoic origins of viviparity in 
squamates (Wright et al., 2015). In captivity, female crocodile lizards 
give birth to fully developed young after a gestation time of up to 
10 months (Li et al., 2019), which is rare even in viviparous lizards 
(Olsson & Shine, 1998). Neonates are surrounded with a transparent, 
water- rich membrane (Figure 1a), which is often broken during partu-
rition. The loss of calcareous eggshells in the crocodile lizard enables 
us to explore relevant genetic changes of viviparity. Due to its special 
characteristics and endangered status, a high- quality reference ge-
nome of the crocodile lizard has been published recently, along with 
genome and transcriptome sequencing data (Xie et al., 2022). Here, 
we make use of currently available squamate genomes to explore 
the possible gene loss associated with the reduction of eggshells in 
viviparous squamates, focusing on eggshell- specific proteins and 
the crocodile lizard. By manually annotating eggshell- specific genes 

in the crocodile lizard genome and subsequent transcriptomic and 
proteomic explorations, we present here evidence that gene loss is 
potentially relevant to the loss of eggshells in the crocodile lizard and 
provide a preliminary view of eggshell- matrix proteins of viviparous 
and oviparous squamates.

2  |  MATERIAL S AND METHODS

2.1  |  Annotation of eggshell- specific genes

The six avian eggshell- specific proteins were selected for manual an-
notation in genomes of the crocodile lizard and other 17 representa-
tive squamate species (Tables S1 and S2). The 18 species we analysed 
include all viviparous lizards with the genome available to date (three 
species), four viviparous snakes, six oviparous lizards, and five ovipa-
rous snakes to facilitate comparison between modes of reproduction. 
Annotation was performed using a homology- based method, follow-
ing manual check. Eggshell- specific proteins were first identified from 
chicken, so the protein sequences of chicken were used as references, 
which were obtained from the UniProtKB or NCBI's NR database. 
Then, Tblastn (Altschul et al., 1990) was done using protein queries 
against the genome, and the hit region was extracted with 2000- bp 
extensions. In this step, the orthologue sequences from Anolis caro-
linensis were used as reference sequences for squamates because it is 
the first squamate genome published and is well- annotated in NCBI's 
NR database (Alföldi et al., 2011). In the case that the orthologue se-
quence of A. carolinensis is absent, the sequence from Podarcis mu-
ralis's chromosome- level genome was used as the reference query. 
A further annotation was performed against the extracted region 
using GeneWise v2.4.1 (Birney et al., 2004). The same annotation 
process was performed independently on every squamate genome. 
Phylogenetic trees were then built using IQtree v1.6.12 (Nguyen 
et al., 2015) to check the orthology of annotated genes. Finally, the 
integrity of the genes was checked manually using the online tool “CD- 
search” at the NCBI website (https://www.ncbi.nlm.nih.gov/Struc ture/
cdd/wrpsb.cgi). Incomplete genes were reannotated from the second 
step with 10 000- bp extensions to exclude possible annotation er-
rors. After annotation, orthologue genes missing conserved protein 
domains or with premature stop codons were assigned as fragmented 
genes. For fragmented genes predicted in the crocodile lizard genome, 
we further checked possible genome assembly errors by (1) mapping 
the sequencing reads used for genome assembly (Xie et al., 2022) back 
to the genome; (2) checking the synteny information of neighbouring 
genes; and (3) conducting Sanger sequencing on the gene region.

2.2  |  Transcriptome data to facilitate annotation

We first collected transcriptome data to validate expression of genes 
annotated in the crocodile lizard genome and search for possible exons 
missing in the genome. The oviduct of a female crocodile lizard, which 
was used for genome sequencing, was sampled for RNA extraction. 

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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The lizard died of an infection in August (during reproductive season), 
2017, at the breeding center of Daguishan Nature Reserve, Guangxi, 
China, and was sampled immediately with the approval of the local 
committee. Unfertilized eggs were present in its oviduct. Libraries 
for sequencing were constructed using the NEBNext UltraTM RNA 
Library Prep Kit for Illumina (NEB, USA) following the manufacturer's 

recommendations. A paired- end library was then sequenced on 
Illumina NovaSeq platform. Transcriptome data of other six tissues 
(Gonad, heart, kidney, liver, lung, and skin) of this individual have been 
published before and were also collected (Xie et al., 2022). Sequencing 
reads were filtered by removing adapters and low- quality reads (reads 
with more than 10% unidentified nucleotides or reads with more than 

F I G U R E  1  Functional loss of OC- 17 in the crocodile lizard. (a) Pictures of unfertilized eggs (upper) of crocodile lizards and a newborn 
lizard with unbroken membrane (lower) showing the absence of calcareous eggshells. Note that the membrane surrounding neonates is 
usually broken during parturition. (b) Annotation of six eggshell- specific proteins in 18 squamates. Names of reference proteins of chicken 
are presented. Species tree was adopted from TimeTree (Kumar et al., 2017). Chicken was added as an outgroup. Viviparous species are 
highlighted in orange. Black numbers indicate intact genes. Grey numbers following an asterisk represent fragmented genes. (c) Schematic 
view of OC- 17 gene structure and syntenic relationship with the downstream gene CPT1B in squamates (CPT1B is absent in chicken). 
Fragmented genes of the crocodile lizard are shown. Species are shown in alphabetical order. See Figure S1 for the OC- 17 gene structure 
and synteny of all the species we looked at. (d) Gene loci of OC- 17a and OC- 17b and transcriptome read mapping of OC- 17a in the crocodile 
lizard genome. (e) Comparison of modelled 3D structures of the OC- 17 of the green anole lizard and the crocodile lizard. Helices and strands 
are shown in blue and green, respectively. Loss of two exons in the crocodile lizard led to tremendous alteration of the protein



4  |    XIE et al.

50% low- quality bases [Phred Q- score < 10]). Both reference- genome- 
based mapping analysis and de novo assembling of transcripts were 
then conducted. Clean reads were mapped to the genome assembly 
using HISAT2 v2.0.4b (Pertea et al., 2016). Only one mismatch was 
allowed for a properly mapped read. De novo assembling of tran-
scripts was conducted using Trinity (version r2012- 10- 05) (Grabherr 
et al., 2011) with default parameters. We then collected transcriptome 
evidence for other species from public resources. Most species we 
analysed have genome annotation information on the NCBI. So for 
fragmented genes in the genome, gene integrity was further manually 
checked by aligning the gene to NCBI's NR database to find possible 
intact transcripts using Tblastn. Genome information for P. vlangalii 
was not available on the NCBI. So, we collected P. vlangalii's transcrip-
tome data from Gao et al. (2018). We used the transcriptome data of 
the oviduct from the stage before ovulation because this is the stage 
when the eggshell gland is active. Data were analysed using the same 
methods implemented on the transcriptome of the crocodile lizard.

2.3  |  Protein structure prediction

Secondary structure was predicted using the PSIPRED web server 
(http://bioinf.cs.ucl.ac.uk/psipr ed/; Buchan & Jones, 2019). The signal 
peptide was predicted on the SignalP- 5.0 web server (http://www.cbs.
dtu.dk/servi ces/Signa lP/; Almagro Armenteros et al., 2019). Homology 
modelling of protein 3D structure was conducted by SWISS- MODEL 
(https://swiss model.expasy.org/; Waterhouse et al., 2018).

2.4  |  Lizard eggshell proteome

Unfertilized eggs of crocodile lizards were collected from the breed-
ing center of Daguishan Nature Reserve (24°09′ N, 111°81′ E), 
Guangxi, China. To serve as a positive control, eggshells of an 
oviparous lizard, the Mongolia racerunner (Eremias argus), were 
collected from wild populations in Shierliancheng Field Station 
of the Institute of Grassland Research of the Chinese Academy of 
Agricultural Sciences (40°12′ N, 111°07′ E), Inner Mongolia, China 
for comparison with viviparous crocodile lizards. The racerunner 
was chosen because fresh eggshells could be collected from semi- 
natural enclosures set up for academic research (Hao et al., 2021), 
and more importantly, the whole- genome sequence resources and 
gene annotation of this lizard, which are needed for proteome iden-
tification, are also available (Li et al., 2022). Eggshells were stored 
in −20°C before processing. Four eggshells were combined to form 
a proteome sample, and three samples were analysed for each spe-
cies. An extra sample of the Mongolia racerunner was analysed to 
confirm the existence of ovocleidin- 17 (OC- 17) in lizard eggshells. 
Whole eggshell matrix proteins were extracted for SDS- PAGE and 
LC– MS analyses. Raw data were processed using MaxQuant v1.6.1.0 
(Tyanova et al., 2016) to search against predicted protein sequences 
of the crocodile lizard and the Mongolia racerunner. A sample from 
Crocodile lizards showed extremely low protein concentration, so 

after initial protein identification, the sample with smallest protein 
number was excluded for both species to facilitate fair comparison. 
The final accepted proteins for each species were obtained from two 
samples. See supplementary note for details of protein extraction, 
LC– MS analysis, and parameters for protein identification.

2.5  |  Statistical test of the number of intact 
eggshell- specific proteins

We implemented the Phylogenetic Generalized- Least Squares 
(PGLS) model using the PHYTOOLS package in R v4.0.5 to test the 
correlation between modes of reproduction and the number of in-
tact proteins. In our univariate PGLS model, we scored the oviparous 
mode of reproduction “0” and the viviparous mode of reproduction 
“1” to quantify the relationship between the modes of reproduction 
and the protein number of the squamate species we annotated.

3  |  RESULTS AND DISCUSSION

3.1  |  Functional loss of OC- 17 in the crocodile lizard

Of the six eggshell- specific genes known in birds, we found there 
is one intact OC- 116 in all squamates examined, while OCX- 36 was 
absent in squamates. For the other four genes, the number of intact 
genes vary in different species (Figure 1b). Specifically, we found 
two fragmented OC- 17, which share 98.55% sequence identity, in 
the crocodile lizard genome (Figure 1c,d). Multi- copies of OC- 17 
are also observed in other species, such as in A. carolinensis (two in-
tact, 90.16% identity), in Z. vivipara (one intact and one fragmented, 
98.45% identity), and in birds like the ostrich (Struthiocalcin- 1 and 
Struthiocalcin- 2, 43.18% identity; Mann & Siedler, 2004). The two 
copies of OC- 17 in the crocodile lizard and other squamates may 
originate from recent lineage- specific gene duplication as they share 
high sequence identity and are within the same gene order with the 
downstream CPT1B (Figure S1), while the homologues in birds may 
have more ancient origin. Further explorations of the OC- 17 genes in 
the crocodile lizard revealed that the exon 4 and exon 5 are missing 
in the longer copy of OC- 17 (OC- 17a), and the other copy (OC- 17b) 
consists of a single exon 3 (Figure 1c). (1) The last two exons of OC- 17 
are missing in the crocodile lizard genome. Both the Tblastn analy-
ses using the OC- 17 protein sequence of A. carolinensis and the last 
two exons of Dopasia gracilis against the chromosome- level genome 
(Xie et al., 2022) and another published scaffold- level genome (Gao 
et al., 2017) of the crocodile lizard received no hit. (2) No assem-
bly error was found in the genomic region of OC- 17. The location 
of OC- 17 and the intergenic region between OC- 17 and the down-
stream CPT1B are fully covered by sequencing reads, and no assem-
bly anomalies exist (Figure S2). Overlapping PCR experiments (about 
1000 bp amplicon) succeeded in amplifying over 4000 bp from the 
third exon of OC- 17 towards CPT1B (Figure S3, Table S3), which 
confirmed no assembly anomalies in the gene region. (3) OC- 17 

http://bioinf.cs.ucl.ac.uk/psipred/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
https://swissmodel.expasy.org/
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transcript is also fragmented. The crocodile lizard's OC- 17 expressed 
at very low levels in the oviduct (Figure 1d, Table S4). Direct mapping 
of the crocodile lizard's RNA- seq to intact genes of other squamate 
species received no hits. The de novo assembled transcripts of the 
crocodile lizard's oviduct only contained a fragmented transcript of 
OC- 17, which consistently does not contain the last two exons.

Comparison of the structure of OC- 17 proteins of squamates and 
birds showed that they have similar secondary structure containing 
two α- helices and eight β- sheets (Figure S4a), which is a common 
characteristic of the C- type lectin family (Ruiz- Arellano et al., 2015). 
The homology- based 3D- structure model of squamate OC- 17 
(XP_008121228.2) showed high similarity with Struthiocalcin- 1 
(the OC- 17 of ostrich; GMQE = 0.78, QMEAN = −1.80; Benkert 
et al., 2010; Waterhouse et al., 2018; Studer et al., 2019; 
Figures S4b,c). A signal peptide was also predicted in the N- terminal 
of the protein, a feature of extracellular proteins (Figure S4d). These 
results indicate that OC- 17 in squamates may serve a homologous 
function to the one observed in birds. The loss of last two exons in 
crocodile lizard OC- 17 results in the loss of four conserved β- sheets 

(β5, β6, β7, and β8), of which β5, β6, and β7 make up the upper side 
of the protein and β8 stabilizes the lower subdomain through Cys31- 
Cys128 binding with helix α1 (Ruiz- Arellano et al., 2015). Therefore, 
we surmised that the encoded protein structure of OC- 17 in croco-
dile lizards is dramatically altered (Figure 1d).

The OC- 116 (Figure S5), OCX- 32, OCX- 25, and OCX- 21 genes are 
intact in crocodile lizards. However, except for OCX- 32 that was highly 
expressed in several tissues, other genes showed limited expression or 
no expression (Table S4). Interestingly, OCX- 32 was the only eggshell- 
specific protein identified in crocodile lizards' eggshells (Table S5).

3.2  |  Identification of OC- 17 in squamate eggshells

We analysed eggshell proteomes of the viviparous crocodile lizard 
and the oviparous Mongolia racerunner. PAGE separation of total 
protein showed different band patterns in these two species, with 
the eggshell matrix of Mongolia racerunner more prominent in bands 
below 20 kDa than that of the crocodile lizard (Figure 2a). OC- 17 in 

F I G U R E  2  Identification of OC- 17 in eggshell proteome. (a) Comparison of SDS- PAGE separation of total eggshell matrices. Lane ear, 
the eggshell matrix of the oviparous Mongolia racerunner. Lanes Scr1- Scr3, eggshell matrices of the viviparous Chinese crocodile lizard. 
Molecular weight of markers is shown in the unit of kDa. (b) Spectra of the two OC- 17 peptides identified in the eggshell matrix of Mongolia 
racerunner. Y- ions and b- ions are shown in red and blue, respectively. Ions with water or ammonia losses are in orange

info:refseq/XP_008121228.2
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birds is located in this mobility region (Mann & Mann, 2015). We 
identified the protein sequence of Mongolia racerunner's OC- 17 in 
its eggshell with two unique peptides (Figure 2b). On the contrary, 
no related OC- 17 peptides were found in crocodile lizard eggshells. 
Apart from OC- 17, OCX- 32 and OCX- 25 were identified in the croc-
odile lizard and the Mongolia racerunner, respectively (Tables S5 and 
S6). OCX- 25 is also one of the most abundant proteins in eggshells of 
Mongolia racerunner (Table S6).

3.3  |  Viviparous squamates show fewer intact 
eggshell- specific proteins

The loss of OC- 17 is not commonly shared in viviparous squamates. 
For the other six viviparous species we annotated, intact OC- 17 
was found in Z. vivipara, P. vlangalii (fragmented in the genome, but 
the complete coding sequence was obtained with transcriptome 
data), Crotalus tigris, and Thamnophis sirtalis. Notechis scutatus and 
Bothrops jararaca presumably lost the functional OC- 17 as they do 
not contain an intact gene in the genome and transcriptome data. 
However, other genes, including OCX- 32, OCX- 25, and OCX- 21, are 
lost or fragmented in some squamates, indicating that the correla-
tion of integrity of eggshell- specific protein genes and the reduc-
tion of eggshells are more complex. We then implemented a PGLS 
model to detect the relationship between modes of reproduction 
and the number of intact eggshell- specific proteins, and we found 
that modes of reproduction negatively correlate with the number 
of proteins (β = −0.426 ± 0.154, t[18] = −2.767, p = 0.014), suggesting 
that viviparous species have a reduced intact eggshell- specific pro-
tein number when compared to oviparous species in our data, which 
is especially the case in snakes (Figure 1b). For some species with 
recent origins of viviparity, such as Z. vivipara and P. vlangalii, they 
might have achieved eggshell reduction through genetic changes 
other than gene loss, which have been explored based on transcrip-
tome data and GWAS (Gao et al., 2018; Recknagel et al., 2021). We 
provide evidence that OC- 17 is functionally lost in the genome of 
crocodile lizards. However, given the long independent evolutionary 
history of the crocodile lizard and lack of fossil records, it is of chal-
lenge to infer the timeline of the loss of OC- 17 in the genome and 
the loss of calcareous eggshells, so a causal link between the gene 
loss and trait evolution is not possible. Based on the observation 
that OC- 17 is intact in some viviparous species and other eggshell- 
specific genes is lost in different species, the loss of OC- 17 in the 
crocodile lizard might more likely have happened after the evolution 
of viviparity due to the relaxed selection. However, the loss of OC- 17 
prevents reversal to oviparity and therefore may serve as an evolu-
tionary constraint.

In conclusion, our analyses on eggshell- specific genes in 
squamates identified a species- specific functional loss of OC- 17, 
a protein essential for the formation of calcareous eggshells, in 
the viviparous crocodile lizard. This, to the best of our knowl-
edge, is the first report of the functional loss of a gene that is 
associated with the reduction of eggshell thickness in a squamate 

reptile (Blackburn, 1995; Cabej, 2019; Foster et al., 2020; Gao 
et al., 2018; Griffith et al., 2016; Murphy & Thompson, 2011). 
Future studies making use of whole- genome sequence of closely 
related oviparous and viviparous species could help understand 
the molecular mechanisms involved in multi- origins of viviparity 
in squamates.
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