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Abstract

Introduction Previous metabolomics studies have revealed

perturbed metabolic signatures in esophageal squamous

cell carcinoma (ESCC) patients, however, most of these

studies included mainly late-staged ESCC patients due to

the difficulties of collecting the early-staged samples from

asymptotic ESCC subjects.

Objectives This study aims to explore the early-staged

ESCC metabolic signatures and potential of serum meta-

bolomics to diagnose ESCC at early stages.

Methods Serum samples of 97 ESCC patients (stage 0, 39

cases; stage I, 17 cases; stage II, 11 cases, stage III, 30 cases)

and 105 healthy controls (HC) were enrolled and randomly

separated into training data (77 ESCCs, 84 HCs) and valida-

tion data (20 ESCCs, 21 HCs). Untargeted metabolomics was

performed to identify ESCC-related metabolic signatures.

Results The global metabolomics profiles could clearly

distinguish ESCC from HC in training data. 16 ascertained

metabolites were found to be disturbed in the metabolic

pathways characterized by dysregulated fatty acid biosyn-

thesis, glycerophospholipid metabolism, choline metabo-

lism in cancer and linoleic acid metabolism. The AUC

value in validation data was 0.895, with sensitivity 85.0 %

and specificity 90.5 %. Good diagnostic performances

were also achieved for early stage ESCC, with the values

of area under the curve (AUC) 0.881 for the ESCC patients

in both stage 0 and I–II. In addition, six metabolites were

found to discriminate ESCC stages. Among them, three

biomarkers, dodecanoic acid, LysoPA(18:1), and

LysoPC(14:0), exhibited clear trend for ESCC progression.

Conclusion These findings suggest serum metabolomics,

performed in a minimally noninvasive and convenient

manner, may possess great potential for early diagnosis of

ESCC patients.
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1 Introduction

Esophageal squamous cell carcinoma (ESCC) remains the

most predominant type of esophageal cancer in the devel-

oping world and an important health problem in high-risk

areas, such as the Asian belt including Turkey, northeastern

Iran, Kazakhstan, and northern and central China (Zhang

et al. 2012a, b; Pennathur et al. 2013). Diagnosis of ESCC

at early stages (0/I/II) is difficult because it is often

asymptotic. Most of ESCC cases are diagnosed in late

stages (III/IV), resulting in poor prognosis with the overall

5-year survival rate of only 9 %. If detected in early stages

(such as stage 0, I and II), the 5-year survival rates are

considerably improved to 47–83 % (Morimoto et al. 2010).

Currently, early diagnosis of ESCC is primarily based on

endoscopy, biopsy and pathological examination (Zhao

et al. 2012). For example, endoscopy with iodine staining

has been accepted as a population-level ESCC screening

program in the high-risk areas of China (Guanrei and

Songliang 1987; Roshandel et al. 2013). However, this

method is expensive for the general population, and the

screening is invasive that patients’ compliance is relatively

low (Dong et al. 2002; Yang et al. 2012). New cost-ef-

fective and non-invasive biomarkers are in great need for

early diagnosis of ESCC.

Altered metabolism has recently been acknowledged as a

key hallmark of cancer and metabolism-focused research

has received renewed attention recently (Hanahan and

Weinberg 2011; Vermeersch and Styczynski 2013). Meta-

bolomics, the global semi-quantitative assessment of

endogenous small molecule metabolites within a biological

system, has been successfully utilized in cancer biomarker

discovery (Spratlin et al. 2009; Zhang et al. 2013, b; Ke

et al. 2015). Up to now, a few ESCC metabolomics studies

has been reported using specimen of serum (Djukovic et al.

2010; Zhang et al. 2011; Ikeda et al. 2012; Zhang et al.

2012a, b, 2013, b; Jin et al. 2014; Mir et al. 2015), plasma

(Hasim et al. 2012; Liu et al. 2013; Xu et al. 2013; Ma et al.

2014), urine (Davis et al. 2012; Hasim et al. 2012), tissue

(Wu et al. 2009; Yakoub et al. 2010; Wang et al. 2013;

Yang et al. 2013; Lynam-Lennon et al. 2014) or gastric

content (Kumar et al. 2012), and conducted on mass spec-

trometry (MS) and nuclear magnetic resonance (NMR)

platforms. These studies revealed significantly perturbed

metabolic expression in ESCC patients compared with

healthy controls. However, most of these studies had lim-

ited sample size of early-staged ESCC patients, due to the

difficulties of collecting the samples from asymptotic

ESCC subjects. Therefore, the disturbance of metabolic

pathways in the early stages of ESCC remains unclear, and

the potential of metabolomics for early diagnosis of ESCC

still need further investigation.

In this study, serum samples of 97 ESCC cases and 105

healthy controls were collected at the Esophageal Cancer

Screening Base in high-risk area of China, notably

including 67 precious serum samples of early stages of

ESCC (stage 0, 39 patients; stage I, 17 patients; stage II, 11

patients). An untargeted metabolomics study using ultra

high performance liquid chromatography quadruple time-

of-flight mass spectrometry (UHPLC-QTOF/MS) tech-

nique was performed to identify ESCC-related metabolic

signatures. Metabolic pathways and biological relevance of

potential biomarkers were intensively studied to gain

insights into disturbed metabolism of ESCC at early stages.

The potential metabolic biomarkers were evaluated on the

validation data. In addition, the biomarkers related ESCC

clinical staging and progression were investigated as well.

2 Materials and methods

2.1 Reagents and materials

LC–MS grade water (H2O), acetonitrile (ACN), methanol

(MeOH), 0.1 % formic acid (FA) in water and 0.1 % FA in

ACN were purchased from Honeywell (Muskegon, MI,

USA). Ammonium fluoride (NH4F) was purchased from

Sigma-Aldrich (St. Louis, USA) and dissolved in LC–MS

grade water prior to use.

2.2 Serum sample collection

The study was approved by the Ethics Committee of the

Shandong Tumor Hospital and written informed consent

was obtained from all participants involved in this study.

Serum samples from 97 ESCC cases and 105 healthy

controls were collected at the Esophageal Cancer Screen-

ing Base of Shandong Province (City of Feicheng, Shan-

dong, China) between June, 2013 and September, 2014. All

the participants enrolled in this base with ages 40–69 years

were screened for esophageal cancer using endoscopy with

mucosal iodine staining (Dawsey et al. 1994, 1998). In this

study, the participants with normal esophageal mucosa

(iodine-positive) were regarded as the health controls.

Meanwhile, biopsies of the iodine-negative participants

were taken from the non-staining area of the mucosa,

which were then underwent pathological evaluation to

confirm and stage by two pathologists. Each ESCC patient

was diagnosed and staged according to the American Joint

Committee on Cancer (AJCC) TNM Classification of

Carcinoma of the Esophagus and Esophagogastric Junction

(7th edition, 2010) (Rice et al. 2010): stage 0 (tumor in situ,

Tis), 39 patients; stage I, 17 patients; stage II, 11 patients;

stage III, 30 patients. The enrolled subjects were randomly
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separated into training subject group (77 ESCC cases, 84

healthy controls) and validation subject group (20 ESCC

cases, 21 healthy controls). Detailed baseline and

histopathologic characteristics for these patients are listed

in Table S2.

Participants involved in this study did not take any

medications, surgery, radiotherapy or chemotherapy, and

those suffering from metabolic diseases, liver diseases,

kidney diseases or any other cancers were excluded. All of

the participants were in an overnight fasting state and 5 mL

of peripheral venous blood was taken in the morning. The

blood was then allowed to clot for 30 min at 37 �C water

batch and followed by centrifugation at 3000 rpm for

15 min. Then the serum supernatant was taken, immedi-

ately freezed in liquid nitrogen, and stored at -80 �C until

further analyses.

2.3 Sample preparation

Serum samples were thawed at 4 �C on ice. Then 50 lL of

serum sample was taken and placed in a 96-well plate, then

extracted with 150 lL of MeOH (which was kept at

-20 �C before extraction) using Bravo liquid handling

system (Agilent Technologies, USA), and followed by

vortex for 30 s and incubation for 2 h at -20 �C to pre-

cipitate proteins. The 96-well plate was then centrifuged at

4000 rpm for 20 min at 4 �C. The resulting supernatants

were transferred to LC–MS vials and stored at -80 �C
until the UHPLC-QTOF/MS analysis.

2.4 UHPLC-QTOF/MS analysis

The serum samples were randomly injected for the

UHPLC-QTOF/MS analysis. Quality control (QC) samples

were prepared by pooling aliquots of all serum samples that

were representative of the serum samples under analysis,

and used for data normalization. Blank samples (75 %

ACN in water) and QC samples were injected every eight

samples during acquisition.

The UHPLC-QTOF/MS analyses were performed using

a UHPLC system (1290 series, Agilent Technologies, USA)

coupled to a quadruple time-of-flight (QTOF) mass spec-

trometer (Agilent 6550 iFunnel Q-TOF, Agilent Technolo-

gies, USA). Waters ACQUITY UHPLC HSS T3 columns

[particle size, 1.8 lm; 100 mm (length) 9 2.1 mm (i.d.)]

were used for the LC separation and the column tempera-

ture was kept as 25 �C. The flow rate was 0.5 mL/min and

the sample injection volume was 6 lL. The mobile phases

A was 0.1 % FA in water in positive mode (ESI?) or

0.5 mM NH4F in water in negative mode (ESI-), and B

was 0.1 % FA in ACN in positive mode or 100 % ACN in

negative mode. The linear gradient was set as follows:

0–1 min: 1 % B, 1–8 min: 1 % B to 100 % B, 8–10 min:

100 % B, 10–10.1 min: 100 % B to 1 % B, 10.1–12 min:

1 % B. The acquisition rate was set as 4 spectra/s and the

TOF mass range was set as m/z 50–1200 Da. The param-

eters of MS data acquisition were set as follows: sheath gas

temperature, 400 �C; dry gas temperature, 250 �C; sheath
gas flow, 12 L/min; dry gas flow, 16 L/min; capillary

voltage, 3000 V in positive mode or -3000 V in negative

mode, respectively; nozzle voltage, 0 V; and nebulizer

pressure, 20 psi in positive or 40 psi in negative mode,

respectively.

Tandem mass spectrometry (MS/MS) data acquisition

was performed using another quadruple time-of-flight mass

spectrometer (Triple TOF 5600?, AB SCIEX, USA). QC

samples were used for MS/MS data acquisition. To expand

the coverage ofMS/MS spectra, the mass range were divided

into four segments: 50–300 Da, 290–600 Da, 590–900 Da,

890–1200 Da. The acquired MS/MS spectra were matched

against in-house tandem MS spectral library for metabolite

identification (see details in Supplement materials).The

source parameters were set as follows: GAS1, 60; GAS2: 60;

CUR: 30; TEM: 600 �C; ISVF: 5500 V and -4500 V in

positive and negative modes, respectively.

2.5 Data preprocessing and annotation

MS raw data (.d) files were converted to the mzXML

format using ProteoWizard, and processed by R package

XCMS (version 3.2). The preprocessing results generated a

data matrix that consisted of the retention time (RT), mass-

to-charge ratio (m/z) values, and peak intensity. R package

CAMERA was used for peak annotation after XCMS data

processing (Kuhl et al. 2012). Metabolic features detected

less than 80 % in all the QC samples were discarded. Only

monoisotopic peaks annotated by CAMERA were selected

for the subsequent statistical analyses. To remove the

unwanted analytical variations occurring intra- and inter-

batches, each metabolite peak in all subject samples was

normalized using the LOESS method based on QC samples

(Dunn et al. 2011). In briefly, a LOESS regression model

was built based on the intensity drift of each metabolite in

the QC samples and was used to predict and correct

intensities of the same metabolite in subject samples. In

addition, the unbalanced age and gender between ESCC

and healthy controls are potential confounding factors for

statistical analyses, therefore, the relative intensity of each

metabolite was further adjusted for age, gender by

regression residual analyses and then standardized with

Z-transformation (mean = 0, SD = 1).

2.6 Statistical analyses

Principal component analysis (PCA) was first used to

reduce the dimensionality of the multidimensional dataset,
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while giving a comprehensive view of the clustering trend

for the multidimensional data. Partial least-squares dis-

criminant analysis (PLS-DA) was then used to understand

global metabolic changes between ESCC and healthy

controls, and corresponding variable importance in the

projection (VIP values) were calculated in PLS-DA model

as well. Validation plot was used to assess the validity of

PLS-DA model by comparing the goodness of fit (R2 and

Q2) of the PLS-DA models with the goodness of fit of 100

Y-permutated models. Meanwhile, the nonparametric

Kruskal–Wallis rank sum test was performed to determine

the significance of each metabolite, and the relevant false

discovery rates (FDR) based on the p values were esti-

mated in the context of multiple testing. Potential meta-

bolic biomarkers were selected with VIP value more than 1

and FDR value less than 0.05. To evaluate the classification

performance, the area under the receiver operating char-

acteristic curve (AUC) was computed using the pROC

package in the R platform. All of the statistical analyses

were performed on the R platform (version 3.1.3), with the

exception that PLS-DA was performed using SIMCA 14.0

(Umetrics AB, Umea, Sweden).

3 Results

The typical UHPLC-QTOF/MS chromatograms of serum

samples for ESCC and healthy controls in positive (ESI?)

and negative (ESI-) modes are shown in Supplement

Fig. S1. In total, 1466 variables (metabolite peaks) were

selected in the final data table for subsequent analyses (981

peaks in ESI? mode, and 485 peaks in ESI- mode).

3.1 Metabolic profiles of ESCC and healthy controls

The PCA performed on the whole samples reveals that the

QC samples are tightly clustered in PCA score plots

(shown in Supplement Fig. S2), indicating the good ana-

lytical reproducibility of this metabolomics study. The

PCA score plot also demonstrated a tendency of difference

in metabolic profiles between ESCC and healthy controls.

PLS-DA was then used to understand global metabolic

changes between ESCC and healthy controls in the training

data. As shown in Fig. 1a, the PLS-DA score plot reveals a

clear separation between ESCC subjects and healthy con-

trols, with good fitting and predictive performances

(R2Y = 0.569, Q2Y = 0.523). And the validation plot

presented in Fig. 1b strongly supports the validity of the

PLS-DA model, since the Q2 regression line (blue color)

has a negative intercept and all permuted R2-values (green

color in the left) are lower than the original point of the R2-

value (green color in the right). Remarkably, excellent

separations are also achieved using PLS-DA analyses for

different cancer stages versus healthy controls, such as

stage 0/Tis vs. healthy controls, stage I-II vs. healthy

controls, and stage III vs. healthy controls (as shown in

Fig. 1c–e).

3.2 Discovery and identification of potential

biomarkers

A total of 439 differential peaks were selected with VIP

value more than 1 and FDR value less than 0.05, including

343 peaks in ESI? and 96 peaks in ESI-. According to the

identity check by raw data and the peaks annotation by

CAMERA, MS/MS experiments and standard compounds,

16 metabolites were ascertained as potential biomarkers to

discriminate ESCC from healthy controls (11 and 5

biomarkers in ESI? and ESI- modes respectively), as

show in Table 1 and Supplement Table S2. The RSD of

these 16 metabolites varied from 1.4 to 36.2 % with a

median of 6.2 %, indicating the robustness of the meta-

bolomics platform. In addition, the fold-change values,

varied from 1.28 to 3.18, are apparently higher their values

of RSD, indicating the magnitude of the changes of these

metabolites is significant for future clinical analysis.

These metabolite biomarkers were identified through

matching accurate mass and tandem MS/MS spectra with

in-house metabolite tandem MS/MS databases. Procedures

for metabolite identification and the detailed information of

16 serum metabolites are shown in the Supplement mate-

rials, Table S2, Fig. S3 and S4. Among then, eight

biomarkers, including dodecanoic acid, cis-9-Palmitoleic

acid, palmitic acid, oleic Acid, cortisol, L-Tyrosine, L-

Tryptophan, and linoleic acid, were further confirmed

using purchased standard references (shown in Supplement

Table S3 and Fig. S3).

These relative intensity of 16 differential metabolites in

ESCC patients versus healthy controls are summarized in

Supplement Fig. S5, and mapped into their biochemical

pathways through metabolic enrichment and pathway

analysis based on database search (KEGG, http://www.

genome.jp/kegg/) and MetaboAnalyst. The overview of

pathway analysis was shown in Supplement Fig. S6. It

revealed evident disorders in fatty acid biosynthesis,

glycerophospholipid metabolism, choline metabolism in

cancer, and linoleic acid metabolism (shown in Table 1).

3.3 Differential metabolites to discriminate ESCC

stages

Figure 2 demonstrates a clear separation trend among dif-

ferent stages of ESCC (stage 0/Tis, I–II, III). To further

determine the significant metabolites discriminating ESCC

stages, the nonparametric Kruskal–Wallis rank sum test

was performed and a value of FDR less than 0.05 was
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considered to be statistically significant. A total of 6

metabolites out of the above 16 potential biomarkers were

identified as differential metabolites to discriminate ESCC

stages (shown in Fig. 3). Notably, three biomarkers,

dodecanoic acid, LPA(18:1/0:0), and LysoPC(14:0/0:0),

exhibited clear trend for ESCC progression. In addition,

compared with the healthy controls, the scaled intensity of

palmitic acid, oleic Acid, and linoleic acid shown up-reg-

ulated expressions in stage 0/Tis other than stage I–II and

III ESCC patients.

3.4 Validation and ROC analysis of potential

biomarkers

The diagnostic potential of these metabolic biomarkers for

ESCC, especially at early stages, was evaluated in the

validation data. As shown in Fig. 4a, the heat map of the 16

biomarkers demonstrated clear differential metabolic pro-

files between ESCC and healthy controls in the validation

data.

Furthermore, random forest model (RF), was con-

structed in R package randomForest composed of 16

biomarkers based on the data of training group. Then the

RF was used to predict the class of subjects in the vali-

dation group. The AUC was 0.895 (95 % confidence

interval, CI 0.783–1.000), with sensitivity of 85.0 % (95 %

CI 70.0–100.0 %) and specificity of 90.5 % (95 % CI

76.2–100.0 %). Notably, the RF model based on 16

biomarkers exhibited good diagnostic performance in early

stage ESCC (shown in Fig. 4b). The values of AUC were

0.881, 0.881 and 0.929 for the ESCC in the stage 0, I–II

and III, respectively.

4 Discussion

In this study, an untargeted metabolomics study based on

UHPLC-QTOF/MS technique was performed to investi-

gate dysregulated metabolic signatures in serum sample of

ESCC patients. In accordance with previous ESCC

Fig. 1 a PLS-DA three-dimensional scores plot in the training data

discriminates ESCC and healthy controls, with fitting and predictive

performance (1 latent variables, R2Y = 0.569, Q2Y = 0.523); b val-

idation plot obtained from 100 permutation tests; and the score plots

of PLS-DA to discriminate. c ESCC stage 0/Tis vs healthy controls (1

latent variables, R2Y = 0.599, Q2Y = 0.542); d ESCC stage I–II vs

healthy controls (6 latent variables, R2Y = 0.976, Q2Y = 0.607);

e ESCC stage III vs healthy controls (5 latent variables,

R2Y = 0.960, Q2Y = 0.746)
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metabolomics studies, our finding demonstrated good dis-

crimination between ESCC and healthy controls. A total of

16 serum metabolites were identified as potential

biomarkers for early diagnosis of ESCC, while 6

biomarkers were further screened and selected to discrim-

inate ESCC stages and 3 metabolites shown clear trend of

ESCC progression. Among them, metabolites (oleic Acid,

LysoPC(14:0/0:0), PC(24:1/22:6), PC(16:0/18:2), L-Ty-

rosine, L-Tryptophan, palmitic acid, and linoleic acid) have

been previously reported to be disturbed in ESCC patients

(Xu et al. 2013; Mir et al. 2015). Our study further con-

firmed these metabolite biomarkers in the early stages of

ESCC. This is the first time to discover that three

biomarkers, dodecanoic acid, LPA(18:1/0:0), and

LysoPC(14:0/0:0), have decreased trend with ESCC pro-

gression, and may potentially be used for the prediction of

cancer stage and progression.

A series of metabolites were found dysregulated in the

pathways of glycerophospholipid metabolism and choline

metabolism in cancer, including 4 lysophosphatidylcholi-

nes (LysoPC), 3 phosphatidylcholines (PC) and 1

lysophosphatidic acid (LPA), as shown in Fig. 5a. Among

them, 3 LysoPCs and 2 PCs were up-regulated in ESCC

patients compared with healthy controls (as shown in

Fig. S5). Abnormal choline metabolism has been well-

documented as a metabolic hallmark associated with

oncogenesis and tumor progression (Glunde et al.

2006, 2011). In cancer, the choline metabolite profile is

characterized by an elevation of PCs and total choline-

containing compounds. The increased PC levels have been

Table 1 Serum metabolomics

biomarkers discriminate ESCC

from healthy controls in the

training data

Pathway Identity name ESCC vs healthy controls RSD%b

VIP FDR AUC Directionc FCc

Fatty acid biosynthesis Dodecanoic acida 1.00 6.7E-5 0.69 Down 1.28 3.2

cis-9-Palmitoleic acida 1.01 6.3E-4 0.67 Up 1.49 10.6

Palmitic acida 1.00 0.012 0.63 Up 1.63 7.0

Oleic acida 1.23 9.7E-5 0.69 Up 1.98 6.3

– Cortisola 1.44 3.5E-8 0.76 Up 2.57 3.3

– L-Tyrosinea 1.00 0.020 0.62 Down 1.54 6.3

L-Tryptophana 1.05 5.1E-6 0.72 Down 1.85 1.4

Glycerophospholipid

Metabolism, and choline

Metabolism in cancer

LPA(18:1/0:0) 1.26 5.9E-7 0.74 Down 2.38 6.2

LysoPC(14:0/0:0) 1.13 8.1E-7 0.74 Down 2.04 5.2

LysoPC(18:2) 1.72 8.8E-13 0.84 Up 3.11 1.6

LysoPC(24:0) 1.46 6.1E-13 0.85 Up 2.20 8.6

LysoPC(18:4) 1.63 3.1E-12 0.83 Up 2.11 1.8

Glycerophospholipid

Metabolism

Linoleic acid metabolism

PC(14:1/P-18:1) 1.71 7.5E-13 0.85 Up 3.18 5.2

PC(16:0/18:2) 1.06 1.9E-6 0.73 Down 2.17 36.2

PC(24:1/22:6) 1.55 4.2E-13 0.85 Up 2.73 7.4

Linoleic acid metabolism Linoleic acida 1.06 3.9E-4 0.67 Up 1.50 10.2

a These compounds were confirmed using standard references
b RSD % for QC samples
c Direction ‘‘up’’ indicates a relative high concentration present in ESCC patients, and FC (fold change)

was calculated from the ratio of the mean values of ESCCs relative to healthy controls; while ‘‘down’’

means a relative low concentration compared to the healthy controls, and FC was calculated from the ratio

of the mean values of healthy controls relative to ESCCs

Fig. 2 PLS-DA three-dimensional scores plot in the training data

discriminates different ESCC stages (3 latent variables,

R2Y = 0.351, Q2Y = 0.185)
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reported in ovarian cancer (Iorio et al. 2005), breast cancer

(Eliyahu et al. 2007), and in ESCC from a recent study

(Mir et al. 2015), which might be interpreted as a

requirement for the high rate of cell proliferation. Notably,

gradient decreases in the concentration of LysoPC(14:0/

0:0) and LPA(18:1/0:0) in the pathway of choline

metabolism in cancer exhibited clear trends for ESCC

progression. In line with our study, Xu et al. also reported a

decreased LysoPC(14:0/0:0) in the plasma of ESCC

patients (Xu et al. 2013). LysoPCs can be transformed into

LPA in a reaction catalyzed by lysophospholipase D (Lyso-

PLD), and significant diminishment of LysoPCs might be

Fig. 3 Changing patterns of differential metabolites from healthy controls (HC) to different stages of ESCC (stage 0/Tis, I–II, III)

Fig. 4 a Heat map in the validation data. Each row represents a metabolite feature and each column represents a sample. b ROC analysis of

random forest model combing 16 biomarkers to diagnose ESCC (stage 0, I–II and III) in the validation data
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correlated with the overexpression of Lyso-PLD. Elevated

PCs are accompanied by a decrease in glycerophospho-

choline (GPC), resulting in a decreased GPC/PC ratio

compared with normal tissue (Aboagye and Bhujwalla

1999; Iorio et al. 2005).

Elevated linoleic acid metabolism was observed in

ESCC patients, including linoleic acid and 3 PCs. Xu et al.

also reported an increased linoleic acid in the plasma of

ESCC patients (Xu et al. 2013). Linoleic acid is an

essential polyunsaturated fatty acid in human nutrition and

used in the biosynthesis of cell membranes, and replace-

ment of saturated fat with linoleic acid has been advocated

to improve serum lipid profiles (Zock and Katan 1998).

Linoleic acid has been linked to the development of cancer

in animals (Banni et al. 1999). Linoleic acid is prone to

oxidation, which may play a role in carcinogenesis (Fang

et al. 1996) and may increase the susceptibility of lipid

particles to oxidative modification (Steinberg et al. 1989).

Meta-analyses of a series of epidemiologic and experi-

mental literatures suggest that high intake of linoleic acid

substantially raises the risks of breast, colorectal, and

prostate cancer (Zock and Katan 1998).

Significantly increased fatty acid biosynthesis was

detected in the serum of ESCC patients compared with

healthy controls (as shown in Fig. 5b). This agrees with the

previous studies that found elevated level of palmitic acid

and oleic acid in blood of ESCC (Xu et al. 2013; Jin et al.

2014), ovarian (Shen et al. 2001) and prostate cancer

(Crowe et al. 2008; Chow 2009). Palmitic acid can be

synthesized from other fatty acids and is the major fatty

acid produced by de novo lipogenesis from acetyl CoA and

malonyl CoA by the enzyme fatty acid synthase. Palmitic

acid can be converted to palmitoyl-CoA, then incorporated

mainly into glycerophospholipid metabolism.

The detection of the early, asymptomatic noninvasive

stage ESCC has a profound impact on clinical outcome.

However, the samples of early stages ESCC is very

precious and difficult to collect because it is often

asymptotic. Base on the Esophageal Cancer Screening

Base of Feicheng (one of ESCC high-risk area of China),

we are able to collect serum samples in the early ESCC

stages (stage 0/Tis, 39 patients; stage I, 17 patients; stage

II, 11 patients). Compared with previous studies, the cur-

rent metabolomics study focused on early stage ESCC

diagnosis. Our study supports that serum metabolomics

signatures could be used to detect ESCC at early stages.

The biomarkers identified in this study exhibited satisfac-

tory diagnostic performance, especially in early stages of

ESCC, with the values of AUC 0.881, 0.881, and 0.929 for

stage 0/Tis, I–II and III, respectively. Nevertheless, con-

sidering the ESCC prevalence as low as less than 1/1000 in

city of Feicheng, the positive predictive value (PPV) may

be not acceptable for the ESCC screening in the general

population (shown in Table S4) (Pearl 2002; Lin et al.

2013). If ESCC prevalence is assumed to be 1/100 in high-

risk population or in clinical practice, the PPV is 8.27 %

corresponding to sensitivity 85.00 % and specificity

90.48 %. Therefore, these serum metabolomics biomarkers

may be applicable for ESCC screening in a high-risk

population or early diagnosis in clinical practice.

The advantages of this study include: This study inclu-

ded 67 precious serum samples of early stages of ESCC

(stage 0, 39 patients; stage I, 17 patients; stage II, 11

patients). In addition, all the potential biomarkers were

identified and matched by MS/MS spectra, and eight

biomarkers were confirmed by metabolite standard refer-

ences. This study also has some limitations. First, the age

distribution between ESCC and healthy controls was

slightly unbalanced, and we don’t have information on

other potential confounding factor besides age and gender.

We also showed the comparison of VIP, FDR, AUC and

fold-change values for the selected biomarkers between

age and gender-adjusted and unadjusted data in Supple-

ment Fig. S7. Although these statistical values in adjusted

Fig. 5 Deregulated pathway in ESCC patients. a Dysregulated choline metabolism in cancer and Linoleic acid metabolism; b abnormal Fatty

acid biosynthesis
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data were slightly lower than that in unadjusted data, the

results in adjusted and non-adjusted data are quite consistent

with each other. Second, potential biomarkers were pre-

liminarily validated in validation data, however, the sample

size of validation data was relatively small, especially for

the stage specific analyses. Further investigations consisting

of large-scale external cohort are needed to validate the

clinical utility of biomarkers discovered in this study.

5 Concluding remarks

This serum metabolomics study was performed to iden-

tify ESCC early diagnostic metabolic signatures by

including 67 precious serum samples from early stages

ESCC patients. The findings suggest serum metabolomics

may possess great potential for diagnosis of asymp-

tomatic noninvasive early stages of ESCC patients.

Metabolic pathways in ESCC patients, mainly charac-

terized by dysregulated fatty acid biosynthesis, glyc-

erophospholipid metabolism and linoleic acid

metabolism, are found to be related to ESCC early stage

development and progression.
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